Monatshefte für Chemie 115, 165-177 (1984)

Die Kristallstruktur von Dikalium-trikobalt(II)-dihydroxidtrisulfat-dihydrat, K₂Co₃(OH)₂(SO₄)₃·2H₂O

H. Effenberger^a und H. Langhof^b

^a Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Österreich

^b Stoe & Cie Ges.m.b.H., D-6100 Darmstadt, Bundesrepublik Deutschland

(Eingegangen 8. Juli 1983. Angenommen 15. Juli 1983)

$\label{eq:crystal} \begin{array}{c} The \ Crystal \ Structure \ of \ Dipotassium-tricobalt(II)-dihydroxy-trisulfate-\\ dihydrate, \ {\rm K_2Co_3(OH)_2(SO_4)_3} \cdot 2 \ {\rm H_2O} \end{array}$

Crystals of $K_2Co_3(OH)_2(SO_4)_3 \cdot 2 H_2O$ were synthesized under hydrothermal conditions. The crystal structure [a = 17.945 (4) Å, b = 7.557 (2) Å, c = 9.760 (3) Å, space group $Cmc2_1, Z = 4$] was determined by direct methods and refined with single crystal X-ray data. The H atoms were located by *Fourier* syntheses. Their structural parameters were refined, too. The final *R*-values are R = 0.025 and $R_w = 0.028 (w = 1/\sigma)$ for 612 reflections with $F_0 > 3 \sigma (F_0)$. Both Co(II) atoms are octahedral six coordinated and form zigzag chains running parallel [001]. These chains are connected via sulfate groups to built up sheets parallel (100). The KO₉ polyhedron and one of the four hydrogen bonds link these sheets.

[Keywords: Sulfate; $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$; Crystal structure; Crystal chemistry]

Einleitung

Die Synthese von Kristallen von $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$ gelang erstmals *Dubler* und *Oswald*¹ unter Hydrothermalbedingungen. Dieselben Autoren² gaben dann später das Pulverdiagramm dieser Substanz an, bestimmten die Gitterkonstanten sowie auf Grund der *Lauesymme*trie und der Auslöschungseinheit die möglichen Raumgruppen. Im Rahmen der hier vorliegenden Arbeit wurde der Strukturtyp von $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$ bestimmt und die Kristallstruktur verfeinert.

Experimentelles und Strukturverfeinerung

Für die hier durchgeführten Untersuchungen wurden Kristalle von $K_2Co_3(OH)_2(SO_4)_3 \cdot 2 H_2O$ unter Hydrothermalbedingungen synthetisiert. Dazu wurden etwa 2 g eines Gemisches von $CoSO_4 \cdot 7 H_2O$ und KI im Gewichtsverhält-

nis von ungefähr 1:1 in einer "Teflonbombe" mit 6,5 cm³ Volumen auf 180 °C über 48 Stunden erhitzt. Als Transportmittel diente H₂O. Der Füllungsgrad lag bei 80%; als Druck stellte sich der Sättigungsdampfdruck der Komponenten ein. Dabei wurden kleine Kristalle von hellvioletter Farbe erhalten, die für eine Strukturverfeinerung geeignet waren. An Luft sind diese Kristalle auch über mehrere Monate durchaus beständig, während sie sich in H₂O innerhalb von wenigen Stunden zersetzen.

Der für die Kristallstrukturuntersuchung verwendete Kristall hatte die Dimensionen $0.12 \times 0.18 \times 0.40$ mm³. Die Messungen wurden auf einem *Stoe*-Vierkreisdiffraktometer durchgeführt. Eine Überprüfung der Gitterparameter ergab innerhalb der Standardabweichung die von *Dubler* und *Oswald*² angegebenen Werte, die auch für die hier vorliegenden Berechnungen übernommen wurden: a = 17.945 (4) Å, b = 7.557 (2) Å, c = 9.760 (3) Å bei vier Formeleinheiten pro Elementarzelle.

Die Auslöschungseinheit wurde mit Weissenberg-Filmaufnahmen überprüft und ergab übereinstimmend mit Dubler und Oswald² (h k l) mit h + k = 2n und (h 0 l) mit l = 2n. Als mögliche Raumgruppen kamen somit Cmcm-D¹⁷_{2h}, Cmc2₁-C¹²_{2v} und C2cm-C¹⁶_{2y} in Frage.

Die Röntgenbeugungsintensitäten wurden mit MoK α -Strahlung (Graphit-Monochromator) im Bereich bis $2 \vartheta = 50^{\circ}$ gemessen. Der Kristall war dabei mit [001] etwa parallel zur φ -Achse des Diffraktometers orientiert, um die Absorptionseffekte möglichst gering zu halten. Die Reflexe wurden im ϑ/ω -scan in Schritten von 0,03° mit einer Meßzeit von 0,5 bis 1,0 s pro Meßpunkt gemessen. Pro Reflex wurden zumindest 47 Punkte vermessen; diese Anzahl wurde jedoch entsprechend der (α_1, α_2)-Dispersion vergrößert. Insgesamt wurden 1155 Reflexe ($h k \pm l$) registriert. Diese wurden in der üblichen Weise für die *Lorentz*- und Polarisationseffekte korrigiert und entsprechend der Symmetrie gemittelt, sodaß ein Datensatz von 643 Reflexen entstand, der für die weiteren Strukturuntersuchungen verwendet wurde.

Die statistische Reflexanalyse ergab eine Intensitätsverteilung, die hoch signifikant für eine azentrische Atomanordnung war. Für die Raumgruppe Cmc2₁ gelang die Lösung der Kristallstruktur mit direkten Methoden (MUL-TAN-80). Die stärksten Maxima der E-Verteilung konnten den Atomen Co, K und S zugeordnet werden. Nachfolgend gerechnete Differenz*fouriers*ummationen zeigten dann die Lagen der Sauerstoffatome. Die Verfeinerung der Strukturparameter (anisotrope Temperaturparameter für alle Atome) erfolgte nach der Methode der kleinsten Quadrate (volle Matrix). Die Streukurven neutraler Atome sowie $\Delta f'$ und $\Delta f''$ wurden den "International Tables for X-ray Crystallography"³ entnommen. Unter Berücksichtigung der Korrektur für die sekundäre Extinktion⁴ konvergierte die Strukturverfeinerung bei R = 0,029 bzw. $R_w = 0,032$ ($w = 1/\sigma$).

Tabelle	1.	Kristalldaten	von	$K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$ (Gi	itterkonstanten	nach
				Dubler und Öswald ²)		

a = 17,945 (4) Å b = 7,557 (2) Å c = 9,760 (3) Å	$\begin{array}{l} Raumgruppe: \ \mathrm{Cmc} 2_1 \overline{} \overline{} {}^{12}_{2^{\mathrm{V}}} \left(\mathrm{Nr.}\ 36\right) \\ \mathrm{Zellinhalt:}\ 4\left\{\mathrm{K}_2\mathrm{Co}_3(\mathrm{OH})^{2_{\mathrm{V}}}_2(\mathrm{SO}_4)_3 \cdot 2\ \mathrm{H}_2\mathrm{O}\right\} \end{array}$
$\begin{array}{l} \rho_{\rm exp} = 3.02 {\rm g \ cm^{-3}} \\ \rho_{\rm rönt} = 3.077 {\rm g \ cm^{-3}} \end{array}$	linearer Absorptionskoeffizient: μ (Mo K α) = 47 cm ⁻¹

		and the second s									
Atom	Punkt- lage	x/a	y/b	z/c	$\beta_{11} \cdot 10^4$	$\beta_{22} \cdot 10^4$	$\beta_{33} \cdot 10^4$	$\beta_{12} \cdot 10^4$	$\beta_{13} \cdot 10^4$	$\beta_{23} \cdot 10^4$	${ m B}_{ m equiv}$
$\begin{array}{c} K \\ Co \left(1 \right) \\ O \left(11 \right) \\ O \left(11$	8 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 0,1931(1)\\ 0,0854(1)\\ 0,0854(1)\\ 0,1741(1)\\ 0,1756(3)\\ 0,1750(3)\\ 0,1750(3)\\ 0,1657(3)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.0448 \ (2) \\ 0.2001 \ (2) \\ 0.3045 \ (3) \\ 0.3045 \ (2) \\ 0.3045 \ (2) \\ 0.3098 \ (8) \\ 0.3998 \ (8) \\ 0.1825 \ (8) \\ 0.1825 \ (8) \\ 0.1825 \ (8) \\ 0.1825 \ (3) \\ 0.0700 \ (10) \\ 0.2353 \ (9) \\ 0.2353 \ (10) \ (10) \ ($	$\begin{array}{c} -0.2616(2)\\ 0.0000*\\ 0.032828(2)\\ 0.0135(2)\\ 0.0135(2)\\ 0.0083(7)\\ -0.1177(6)\\ 0.0358(6)\\ 0.1266(5)\\ -0.3206(5)\\ -0.3216(6)\\ -0.3216(6)\\ -0.3216(6)\\ -0.3216(6)\\ -0.3216(6)\\ 0.3882(6)\\ 0.3882(6)\\ 0.3882(6)\\ 0.3882(6)\\ 0.426(9)\\ 0.411(11)\\ \end{array}$	$\begin{smallmatrix} 16(1) \\ 6(1) \\ 6(1) \\ 6(1) \\ 12(2) \\ 21(3) \\ 22(3)$	$\begin{array}{c} 101 \ (4) \\ 4.9 \ (2) \\ 6.0 \ (3) \ (3) \$	$\begin{array}{c} 260 \\ 280 \\$	$\begin{array}{c} & - & 2 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ &$	$\begin{smallmatrix} 6 & (1) \\ 0 & 0 \\ 0 & (1) \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} & - & 3 \\ & - & 3 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

* Fixiert zur Definition des Ursprunges der Elementarzelle.

Tabelle 3. Interatomare Abstände (in Å) und Bindungswinkel (in °) für $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$. Standardabweichungen in Einheiten der letzten Stellen in Klammern. Die O—O-Abstände der Koordinationspolyeder um die Atome K und Co sind nur bis zu 3,3 Å angegeben

Koordinationspolyeder	Liganden	Abstand	Winkel
$\begin{array}{l} \text{K}-\text{O}\left(11\right) = 3,105(6)\\ \text{K}-\text{O}\left(11\right)' = 3,070(6)\\ \text{K}-\text{O}\left(12\right) = 3,046(6)\\ \text{K}-\text{O}\left(12\right)' = 2,962(5)\\ \text{K}-\text{O}\left(13\right) = 2,965(5)\\ \text{K}-\text{O}\left(13\right)' = 2,879(5)\\ \text{K}-\text{O}\left(14\right) = 2,867(5)\\ \text{K}-\text{O}\left(22\right) = 3,007(5)\\ \text{K}-\text{O}_w = 2,859(6)\\ \end{array}$	$\begin{array}{c} O(11), \ O(12) \\ O(11), \ O_w \\ O(11)', \ O(13) \\ O(12), \ O(22) \\ O(12)', \ O(14) \\ O(13), \ O(14) \\ O(13)', \ O(14) \end{array}$	$\begin{array}{c} 2,403(8)\\ 3,242(9)\\ 2,375(8)\\ 2,892(8)\\ 2,835(8)\\ 2,924(8)\\ 2,374(8)\end{array}$	$\begin{array}{c} 46,0\left(2\right)^{\rm b} \\ 65,7\left(2\right) \\ 46,3\left(2\right)^{\rm b} \\ 57,1\left(2\right)^{\rm a} \\ 58,2\left(2\right)^{\rm a} \\ 60,2\left(2\right) \\ 48,8\left(2\right)^{\rm b} \end{array}$
Mittelwert: 2,973			
$\begin{array}{ll} & \text{Co} (1) & -\text{O} (11) = 2,111 (5) & 2 \times \\ & \text{Co} (1) & -\text{O} (21) = 2,142 (6) \\ & \text{Co} (1) & -\text{O} (23) = 2,161 (7) \\ & \text{Co} (1) & -\text{O}_h (1) = 2,129 (6) \\ & \text{Co} (1) & -\text{O}_h (2) = 2,077 (7) \end{array}$ Mittelwert: 2,122	$\begin{array}{c} \mathrm{O} \ (11), \ \mathrm{O} \ (21) \\ \mathrm{O} \ (11), \ \mathrm{O} \ (23) \\ \mathrm{O} \ (11), \ \mathrm{O}_{h} \ (1) \\ \mathrm{O} \ (11), \ \mathrm{O}_{h} \ (2) \\ \mathrm{O} \ (21), \ \mathrm{O} \ (23) \\ \mathrm{O} \ (21), \ \mathrm{O}_{h} \ (1) \\ \mathrm{O} \ (23), \ \mathrm{O}_{h} \ (2) \\ \mathrm{O} \ (21), \ \mathrm{O}_{h} \ (2) \end{array}$	$\begin{array}{c} 2,800(7)\\ 2,985(8)\\ 3,022(8)\\ 3,152(8)\\ 2,687(10)\\ 3,252(10)\\ 3,128(11)\\ 2,992(10) \end{array}$	$\begin{array}{lll} 82,3(2) & 2\times\\ 88,6(2) & 2\times\\ 90,9(2) & 2\times\\ 97,6(2) & 2\times\\ 77,3(3) & \\ 99,2(3) & \\ 95,1(3) & \\ 88,4(3) & \\ \end{array}$
	Mittelwert:	2,998	89,9
Co (2)—O (12) = 2,134 (5) Co (2)—O (14) = 2,048 (5) Co (2)—O (22) = 2,102 (5) Co (2)—O _h (1) = 2,086 (5) Co (2)—O _h (2) = 2,123 (5) Co (2)—O _w = 2,139 (6) Mittelwert: 2,105	$\begin{array}{c} O(12), \ O(14) \\ O(12), \ O(22) \\ O(12), \ O_{n}(2) \\ O(12), \ O_{w} \\ O(12), \ O_{w} \\ O(14), \ O(22) \\ O(14), \ O_{h}(1) \\ O(14), \ O_{w} \\ O(22), \ O_{h}(1) \\ O(22), \ O_{h}(2) \\ O_{h}(1), \ O_{w} \\ O_{h}(2), \ O_{w} \end{array}$	$\begin{array}{c} 2,835(8)\\ 2,892(8)\\ 3,190(6)\\ 2,908(9)\\ 2,738(8)\\ 3,076(6)\\ 3,002(8)\\ 3,210(9)\\ 2,914(9)\\ 2,778(11)\\ 2,938(8)\\ 3,240(9) \end{array}$	$\begin{array}{c} 85,4 \left(2\right)^{a} \\ 86,1 \left(2\right)^{a} \\ 97,1 \left(2\right) \\ 85,8 \left(3\right) \\ 82,6 \left(2\right) \\ 96,1 \left(2\right) \\ 91,6 \left(2\right) \\ 100,1 \left(3\right) \\ 87,2 \left(3\right) \\ 82,6 \left(2\right)^{c} \\ 88,1 \left(3\right) \\ 99,0 \left(3\right) \end{array}$
	Mittelwert:	2,977	90,1
S(1) - O(11) = 1,479(5) S(1) - O(12) = 1,469(6) S(1) - O(13) = 1,461(5) S(1) - O(14) = 1,458(5) Mittelwert: 1,467	O (11), O (12) O (11), O (13) O (11), O (14) O (12), O (13) O (12), O (13) O (12), O (14) O (13), O (14) Mittelwert:	2,403 (8) 2,375 (8) 2,416 (8) 2,396 (8) 2,408 (8) 2,374 (8) 2,395	$109,2 (4)^{b} \\ 107,8 (3)^{b} \\ 110,7 (4) \\ 109,7 (3) \\ 110,7 (3) \\ 108,8 (3)^{b} \\ 109,5$

Koordinationspolyeder	Liganden	Abstand	Winkel	
S(2) - O(21) = 1,468(7)	O (21), O (22)	2,380 (8)	108,4(3)	$2 \times$
$S(2) - O(22) = 1,467(5) - 2 \times S(2) - O(23) = 1,475(8)$	O(21), O(23) O(22), O(22) O(22), O(22)	2,425(10) 2,397(11) 2,406(0)	111,0(4) 109,6(5) 100,8(2)	9 V
Mittelwert: 1,469	Mittelwert:	2,400 (9)	109,8(3)	2 X

Tabelle 3 (Fortsetzung)

 $^{\rm a}$ Gemeinsame O—O-Kante zwischen ${\rm KO}_9\mathchar`-$ und ${\rm CoO}_6\mathchar`-$ Koordinationspolyedern.

 $^{\rm b}$ Gemeinsame O—O-Kante zwischen ${\rm KO}_9\mathchar`$ und ${\rm SO}_4\mathchar`-Koordinationspolyedern.$

 $^{\rm e}$ Gemeinsame O—O-Kante zwischen zwei ${\rm Co}(2){\rm O}_6\text{-}{\rm Koordinationspolyedern.}$

Zur Lokalisation der Atome H(1) und H(2) der beiden OH-Gruppen sowie H_w (1) und H_w (2) des Wassermoleküls wurde in diesem Stadium der Strukturverfeinerung eine Differenz*fourier*summation berechnet. Diese zeigte an für die H-Atome kristallchemisch plausiblen Positionen Maxima, deren Ortsparameter und isotrope Temperaturparameter ebenfalls verfeinert wurden. Der *R*-Wert betrug letztlich für alle 643 Reflexe R = 0,027 und $R_w = 0,028$; unter Ausschluß von 31 Reflexen mit $F_0 < 3 \sigma$ (F_0) R = 0,025 und $R_w = 0,028$. In Tabelle 1 wurden die Kristalldaten zusammengefaßt, in Tabelle 2 die

In Tabelle 1 wurden die Kristalldaten zusammengefaßt, in Tabelle 2 die Strukturparameter. Eine Liste der beobachteten und berechneten Strukturamplituden wurde am Institut für Mineralogie und Kristallographie der Universität Wien hinterlegt.

Ergebnisse und Diskussion

Wichtige interatomare Abstände und Bindungswinkel für die Koordinationspolyeder um die Atome K, Co und S sind in Tabelle 3 angeführt. Zur Diskussion der Koordinationen der Sauerstoffatome sowie zu jener der Wasserstoffbrückenbindungen vgl. die Tabellen 4 und 5.

Das Kaliumatom besitzt eine unregelmäßige Neunkoordination mit K—O-Abständen zwischen 2,859 Å und 3,105 Å. Der Mittelwert ist mit 2,973 Å geringfügig größer als der Summe der Ionenradien für K^[9] und O mit 2,93 Å⁵ entspricht. Ein zehntes O-Atom — O (13) — folgt erst mit einem K—O-Abstand von 3,326 (6) Å. Das Kaliumatom bindet an acht zu Sulfatgruppen gehörende Sauerstoffatome und an ein O_w-Atom, wobei der Abstand K—O_w der kürzeste aller K—O-Abstände ist. Neunkoordination von Kaliumatomen sind in mehreren anorganischen Verbindungen gefunden worden⁶, z. B. auch in den Kristallstrukturen von KHSO₄, Mercallit, mit mittleren K^[9]—O-Abständen von 2,917 Å

Abb. 1. Die Koordination der K-Atome im $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$. Projektion parallel [001]. Es sind nur die K-Atome mit $0.5 \le z/c \le 1.0$ dargestellt

und 2,862 Å⁷, von KB_5O_8 mit $K^{[9]}O = 3,01$ Å⁸ und von $K_2Mn(SO_4)_2 \cdot 4 H_2O$, Mn-Leonit, mit $K^{[9]}O = 2,96$ Å⁹.

Die Kalium-Koordinationspolyeder werden über je zwei gemeinsame O-O-Kanten von 3,775 (8) Å untereinander verknüpft, so daß parallel [010] liegende gewinkelte Ketten entstehen (Abb. 1). Die drei kürzesten O-O-Kanten im Koordinationspolyeder um jedes Kaliumatom sind zugleich auch Kanten von SO_4 -Tetraedern. Weitere zwei O-O-Kanten sind mit denen von CO_6 -Oktaedern gemeinsam. Beide kristallographisch verschiedenen Co(II)-Atome sind oktaedrisch von je sechs O-Atomen umgeben. Das Atom Co(1) mit der Punktsymmetrie m wird dabei von vier zu Sulfatgruppen gehörenden Sauerstoffatomen und von zwei OH-Gruppen umgeben. Hingegen liegt das Atom Co(2) auf der allgemeinen Punktlage und wird von drei zu Sulfatgruppen gehörenden Sauerstoffatomen, zwei OH-Gruppen und einem O_w-Atom koordiniert. Als Koordinationsfigur von Co(II)-Atomen wurde das Oktaeder am häufigsten gefunden; nur in einzelnen Ausnahmefällen liegen andere Koordinationsfiguren (wie z. B. [5]- oder [4 + 4]-Koordination) gegenüber Sauerstoff vor¹⁰⁻¹³.

Die mittleren Abstände Co(1)—O = 2,122 Å und Co(2)—O = 2,105 Å entsprechen den aus der Literatur bekannten Werten. Als Summe der Ionenradien errechnet sich der $\text{Co}(\text{II})^{[6]}$ —O-Abstand zu 2,13 Å⁵. Im $\text{Co}_3(\text{OH})_2(\text{SO}_4)_2 \cdot 2 \text{ H}_2\text{O}$ betragen die mittleren Co–O-Abstände für die beiden kristallographisch verschiedenen Co-Oktaeder 2,120 Å und 2,076 Å¹⁴. In den Co(II)-Phosphaten treten ebenfalls ähnliche Werte auf. So beträgt der mittlere $\text{Co}^{[6]}$ —O-Abstand im $\text{Co}_3(\text{PO}_4)_2$ um das Atom Co(1) 2,125 Å¹⁰, im $\text{Co}_3(\text{PO}_4)_2 \cdot \text{H}_2\text{O}$ um das Atom Co(1) 2,111 Å und um das Atom Co(2) 2,106 Å¹¹ sowie im $\text{Co}_5(\text{PO}_4)_2(\text{OH})_4$ um die drei Co(II)-Atome 2,107 Å, 2,144 Å und 2,140 Å¹⁵. Im $\text{Co}_3(\text{ASO}_4)_2$ betragen die mittleren Co–O-Abstände um zwei oktaedrisch koordinierte Co(II)-Atome 2,092 Å bzw. 2,108 Å¹³.

Im K₂Co₃(OH)₂(SO₄)₃ · 2 H₂O ist das Koordinationspolyeder um das Atom Co(2) über zwei gemeinsame O—O-Kanten mit dem KO₉-Koordinationspolyeder und über eine weitere O—O-Kante $[O_h(1)]$ — $O_h(2)$] mit einem zweiten Co(2)O₆-Oktaeder verknüpft. Das Co(1)O₆-Oktaeder hat hingegen keinerlei gemeinsame O—O-Kante mit anderen Koordinationspolyedern. Die mittleren O—O-Abstände der zwölf Kanten in den Koordinationspolyedern um das Atom Co(1) mit 2,998 Å ist geringfügig größer als um das Co(2)-Atom mit 2,977 Å. Die durchschnittlichen Abweichungen der O—Co–O-Bindungswinkel (ohne Berücksichtigung der Diagonalen im Oktaeder) von 90° sind für die zwölf O—Co(1)—O-Winkel mit 5,3° geringfügig kleiner als für die O—Co(2)— O-Winkel mit 5,5°.

Die mittleren S—O-Bindungslängen in den Sulfattetraedern sind mit 1,467 Å für die S(1)O₄-Gruppe bzw. mit 1,469 Å für die S(2)O₄-Gruppe innerhalb der Fehlergrenzen gleich. Die mittleren O—S—O-Bindungswinkel betragen für beide Sulfattetraeder übereinstimmend 109,5°. Diese Werte entsprechen den üblichen kristallchemischen Erfahrungen. So beträgt nach Baur¹⁶ der Mittelwert für S—O-Abstände in Sulfatgruppen 1,473 Å. Wuensch¹⁷ findet für die Sulfatgruppen in gut belegten anorganischen Kristallstrukturen Einzelwerte für die S—O-Bindungslängen zwischen 1,45 Å und 1,49 Å sowie für die 0—S—O-

¹² Monatshefte für Chemie, Vol. 115/2

Koordination d	es O-Atoms	ν	W	Winkel am O-Atom			
O (11)—K O (11)—K' O (11)—Co (1) O (11)—S (1)	= 3,105 (6) = 3,070 (6) = 2,111 (5) = 1,479 (5)	$0,06 \\ 0,07 \\ 0,32 \\ 1,49 \\ \overline{\Sigma = 1.94}$	K K K K	K' =	105,8 (2) (1) 116,3 (2) (1) 85,9 (3) (1) 122,5 (2) (1) 91,8 (3) (2) 127,0 (2)		
O (12)—K O (12)—K' O (12)—Co (2) O (12)—S (1)	= 3,046 (6) = 2,962 (5) = 2,134 (5) = 1,469 (6)	$ \begin{array}{c} 0,07 \\ 0,09 \\ 0,31 \\ 1,53 \\ \hline{\Sigma = 2,00} \end{array} $	K K K K	$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	$\begin{array}{c} 91,3 (2) \\ (2) & 106,8 (2) \\ (2) & 88,4 (3) \\ (2) & 102,2 (2) \\ (2) & 127,1 (2) \\ (2) & 128,4 (2) \end{array}$		
$\begin{array}{l} 0 \ (13) - K \\ 0 \ (13) - K' \\ 0 \ (13) - S \ (1) \\ 0 \ (13) - S \ (1) \\ 0 \ (13) \cdots H_w \ (2) \end{array}$	= 2,965 (5) = 2,879 (5) = 1,461 (5) = 1,99 (11)	$ \begin{array}{c} 0,09\\ 0,12\\ 1,57\\ 0,16\\ \hline \sum = 1,94 \end{array} $	K K K S	${f K'} = {f K'} = {f S} {f I} {f K'} = {f S} {f I} {f H}_w$	$\begin{array}{c} 94,6(2)\\ 96,5(2)\\ (2) & 128(4)\\) & 99,4(2)\\ (2) & 88(3)\\ (2) & 135(4) \end{array}$		
O (14)—K O (14)—Co (2) O (14)—S (1)	= 2,867 (5) = 2,048 (5) = 1,458 (5)	$0.12 \\ 0.38 \\ 1.58 \\ \overline{\sum = 2.08}$	K K Co	$S_{2} = \frac{Co}{S(1)}$	$\begin{array}{ll} (2) & 107,8(2) \\ 100,0(2) \\ 140,6(3) \end{array}$		
$\begin{array}{l} O (21) & - Co (1) \\ O (21) & - S (2) \\ O (21) & - H_w (1) \end{array}$	= 2,142 (6) = 1,468 (7) = 2,35 (9)	$0,30 \\ 1,53 \\ 0,11 \\ \overline{\sum = 2,05}$	$\begin{array}{c} & Cc\\ Cc\\ 2\times & S(\\ H \end{array}$	(1), S(1) $(1), H_w$ $(2), H_w$ $(1), H_w$	$ \begin{array}{ccc} 138,2(3) \\ (1) & 103(2) & 2 \times \\ (1) & 104(2) & 2 \times \\ (1) & 99(4) \end{array} $		
O (22)—K O (22)—Co (2) O (22)—S (2) O (22) H (2)	= 3,007 (5) = 2,102 (5) = 1,467 (5) = 2,70 (13)	$0,08 \\ 0,33 \\ 1,54 \\ 0,08 \\ \overline{\sum = 2,03}$	K K Co Co S	$\begin{array}{ccc} , & Co \\ , & S(2) \\ , & H(0) \\ (2) & S(2) \\ (2) & H(0) \\ (2) & H(0) \\ (2) & H(0) \\ (2) & H(0) \\ (3) & (3)$			
O (23)—Co (1) O (23)—S (2) O (23) ··· H (1)	= 2,161 (7) = 1,475 (8) = 2,18 (15)	$0,28 \\ 1,50 \\ 0,13 \\ \overline{\sum = 1,91}$	Co Co S ((1), S(2) (1), H(2), H(2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

Tabelle 4. Koordination der Sauerstoffatome im $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$ (Abstände in Å, Winkel in °, Standardabweichungen in Einheiten der letzten Stellen in Klammern). Die Bindungsstärken v wurden nach Brown und Wu⁵ berechnet

Koordination	les O-Atoms	ν		Winkel	am O-Ato	om
$O_{h}(1)$ —Co(1)	= 2,129(6)	0,31		Co (1),	Co (2)	125,3 (2) 2 ×
$O_{h}(1)$ —Co (2) $O_{h}(1)$ —H (1)	$= 2,086 (5) \\= 0,89 (15)$	0,35	$2 \times$	Co (1), Co (2), Co (2)	H (1) Co (2) H (1)	$\begin{array}{c} 90(9)\\ 94,5(4)\\ 111(7) \qquad 2\ \times\end{array}$
		$\overline{\sum = 1.01}$				
$O_{h}(2)$ —Co(1)	= 2,077(7)	0,36		Co (1),	Co (2)	119,8 (2) 2 ×
$O_{h}(2)$ —Co (2) $O_{h}(2)$ —H (2)	= 2,123 (5) = 0,73 (15)	0,31	$2 \times$	Co (1), Co (2), Co (2),	H (2) Co (2) H (2)	$\begin{array}{c} 102(11)\\ 92,4(4)\\ 112(9) 2\times \end{array}$
		$\overline{\sum = 0.98}$				
O _w —K O _w —Co (2) O _w —H _w (1) O _w —H _w (2)	= 2,859 (6) = 2,139 (6) = 0,66 (9) = 0,83 (11)	$0,13$ $0,30$ $\overline{\sum = 0,43}$		K, K, Co (2), Co (2), H _w (1),	$\begin{array}{c} {\rm Co}(2) \\ {\rm H}_{\rm w}(1) \\ {\rm H}_{\rm w}(2) \\ {\rm H}_{\rm w}(1) \\ {\rm H}_{\rm w}(2) \\ {\rm H}_{\rm w}(2) \end{array}$	119,9 (2) 100 (8) 106 (8) 120 (9) 104 (8) 107 (11)

Tabelle 4 (Fortsetzung)

Bindungswinkel zwischen 108A115Z und 112° in Abhängigkeit von der Koordination der Sauerstoffatome.

Die Koordinationen der Sauerstoffatome sind in Tabelle 4 zusammen mit den Bindungsstärken v (nach *Brown* und Wu^{18}) angegeben. Die Koordinationsfiguren lassen sich unter Berücksichtigung der Wasserstoffbrückenbindungen (Tabelle 5) mit Ausnahme der Atome O(14) und O(23) als stark verzerrt tetraedrisch beschreiben. Die beiden Sauerstoffatome O(14) und O(23) sind nur von je drei Kationen schwach pyramidal umgeben. Die Art der koordinierenden Kationen sind z. T. für die einzelnen Sauerstoffatome recht unterschiedlich. Die Bindungsstärken vder zu den Sulfatgruppen gehörenden Sauerstoffatome betragen zwischen 1,91 und 2,08, was in befriedigender Weise den Erwartungen entspricht. Die Wasserstoffatome konnten an kristallehemisch plausiblen Positionen lokalisiert werden. Der Mittelwert der röntgenographisch bestimmten O—H-Abstände beträgt 0,78 Å. Die beiden O_n-Atome werden von jeweils drei Co-Atomen trigonal pyramidal umgeben; das H-Atom liegt stets auf der den Co-Atomen abgewandten Seite. Die

12*

t; Standardabwei-	Н0Н	107 (11)
Bindungswinkel in ° angeführt Klammern angeführt	$0 \cdots H \cdots 0$	53 (10)
	0 H0	$\left. \begin{array}{c} 174 \ (8) \\ 153 \ (16) \\ 168 \ (8) \\ 157 \ (8) \end{array} \right\}$
inde sind in Å ten Stellen in	0…0	$egin{array}{c} 3,060(10)\ 3,370(9)\ 3,005(8)\ 2,768(8) \end{array}$
2 H ₂ O. Abstä siten der letz	0…Н	$\begin{array}{c} 2,18(15)\\ 2,70(13)\\ 2,35(9)\\ 1,99(11) \end{array}$
<i>rücken im</i> $K_2Co_3(OH)_2(SO_4)_3 \cdot 5$ chungen werden in Einhe	Н0	$\begin{array}{c} 0,89\ (15)\\ 0,73\ (15)\\ 0,66\ (9)\\ 0,83\ (11) \end{array}$
	Akzeptor	$\begin{array}{c} 0 \ (23) \\ 0 \ (22) \\ 0 \ (21) \\ 0 \ (13) \end{array}$
Wasserstoffbr	Donator	$\begin{array}{c} 0_{h}(1) \\ 0_{h}(2) \\ 0_{h} \\ 0_{h} \end{array}$
Tabelle 5.	H-Atom	$egin{array}{c} H \ (1) \ H \ (2) \ H_w \ (1) \ H_w \ (2) \ H_w $

Die Kristallstruktur von
$$K_{2}Co_{3}(OH)_{2}(SO_{4})_{3} \cdot 2H_{2}O$$
 175

 O_h —H-Bindungen stehen etwa senkrecht zu den durch die drei Co-Atome definierten Ebenen. Allerdings ist die Wasserstoffbrückenbindung der $O_h(2)H(2)$ -Gruppe sehr schwach. Es gibt um das Atom $O_h(2)$ erst im Abstand von 3,370 Å zwei benachbarte Sauerstoffatome O(22),

Abb. 2. Eine der parallel (100) liegenden ${}^{\infty}_{\infty}$ [Co₃(OH)₂(SO₄)₃(H₂O)₂]. Schichten des K₂Co₃(OH)₂(SO₄)₃ · 2 H₂O. Die Atome Co und S liegen dabei in $-0.25 \le x/a \le +0.25$. Die in dieser Schicht liegenden Wasserstoffbrückenbindungen sind eingezeichnet

wobei $O_h(2)$ —O nicht gleichzeitig eine Kante eines Koordinationspolyeders um ein Kation darstellt. Die Atome $O_h(2)$ und H(2) liegen auf einer Symmetrieebene, das Atom O(22) auf einer allgemeinen Punktlage; das Atom H(2) weist symmetriebedingt (mit der Genauigkeit der röntgenographischen Strukturbestimmung) zwischen seine beiden Akzeptor-Sauerstoffatome. Formal läßt sich diese Wasserstoffbrückenbindung als $O_h(2)$ —H(2) $< \frac{O(2)}{O(2)}$ angeben. Das Sauerstoffatom des Wassermoleküls ist nur an ein Co-Atom und an ein K-Atom gebunden. Die Umgebung des Wassermoleküls entspricht der allgemeinen kristallchemischen Erfahrung.

Die CoO_6 -Oktaeder werden untereinander über die Atome O_h(1) und O_h(2) zu parallel [001] liegenden gewinkelten Ketten verknüpft. Dabei besitzen je zwei Co(2)O₆-Oktaeder eine gemeinsame O_h(1)--O_h(2)-Kante

Abb. 3. Projektion der Kristallstruktur von $K_2Co_3(OH)_2(SO_4)_3 \cdot 2H_2O$ parallel [010]. Aus Gründen der Übersichtlichkeit sind die Koordination des K-Atoms sowie die H-Atome nicht eingezeichnet

von 2,778 Å. Das $\operatorname{Co}(1)O_6$ -Oktaeder bindet über Ecken mit den $\operatorname{Co}(2)$ -Oktaedern, und zwar über die Atome $O_n(1)$ und $O_n(2)$ der gemeinsamen Kante zweier $\operatorname{Co}(2)O_6$ -Oktaeder. Diese Ketten werden über Sulfattetraeder zu einem parallel (100) liegenden Schichtverband verknüpft, der in Abb. 2 dargestellt ist. Drei der vier Wasserstoffbrückenbindungen liegen ebenfalls in dieser ${}^{2}_{\infty} [\operatorname{Co}_3(\operatorname{OH})_2(\operatorname{SO}_4)_3(\operatorname{H}_2O)_2]$ -Schicht. Über die K-Atome und über die vierte Wasserstoffbrückenbindung werden diese Schichten zu einem dreidimensionalen Gerüstverband verbunden (Abb. 3). Mit diesem Befund steht auch die makroskopisch beobachtete Ausbildung der Kristalle von $\operatorname{K}_2\operatorname{Co}_3(\operatorname{OH})_2(\operatorname{SO}_4)_3 \cdot 2\operatorname{H}_2O$ in guter Übereinstimmung: es kristallisieren stets leistenförmige Kristalle, die nach [001] gestreckt und nach (100) abgeplattet sind.

Dank

Herrn Prof. Dr. J. Zemann danken wir für zahlreiche Diskussionen. Die Hochschuljubiläumsstiftung der Stadt Wien förderte diese Arbeit durch eine großzügige finanzielle Unterstützung.

Literatur

- ¹ Dubler E., Oswald H. R., Naturwiss. 56, 327 (1969).
- ² Dubler E., Oswald H. R., J. Appl. Cryst. 3, 175 (1970).
- ³ International Tables for X-ray Crystallography, Vol. IV. Birmingham: The Kynoch Press. 1974.
- ⁴ Zachariasen W. H., Acta Cryst. 23, 558 (1967).
- ⁵ Shannon R. D., Acta Cryst. A 32, 751 (1976).
- ⁶ Cocco G., Fanfani L., Zanazzi P. F., Handbook of Geochemistry II-2, 19/A. Berlin-Heidelberg-New York: Springer. 1972.
- ⁷ Payan F., Haser R., Acta Cryst. **B32**, 1875 (1976).
- ⁸ Krogh-Moe J., Acta Cryst. 18, 1088 (1965).
- ⁹ Srikanta S., Sequeira A., Chidambaram R., Acta Cryst. B24, 1176 (1968).
- ¹⁰ Anderson J. B., Kostiner E., Miller M. C., Rea J. R., J. Solid State Chem. 14, 372 (1975).
- ¹¹ Anderson J. B., Kostiner E., Ruszala F. A., Inorg. Chem. 15, 2744 (1976).
- ¹² Nord A. G., Stefanidis T., Z. Krist. **153**, 141 (1980).
- ¹³ Gopal R., Rutherford J. S., Robertson B. E., J. Solid State Chem. 32, 29 (1980).
- ¹⁴ Dubler É., Oswald H. R., Helv. Chim. Acta 54, 1621 (1971).
- ¹⁵ Ruszala F. A., Anderson J. B., Kostiner E., Inorg. Chem. 16, 2417 (1977).
- ¹⁶ Baur W. H., Acta Cryst. 17, 1361 (1964).
- ¹⁷ Wuensch B. J., Handbook of Geochemistry II-2, 16/A. Berlin-Heidelberg-New York: Springer. 1972.
- ¹⁸ Brown I. D., Wu K. K., Acta Cryst. **B32**, 1957 (1976).
- ¹⁹ Chiari G., Ferraris G., Acta Cryst. **B38**, 2331 (1982).